Finnish dosimetric practice for epithermal neutron beam dosimetry in boron neutron capture therapy

نویسنده

  • Jouni Uusi-Simola
چکیده

Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose components with different relative biological effectiveness. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements in order to ensure patient safety, comparability of results between different BNCT centers and to enable comparison with other treatment modalities. The established international recommendations for radiotherapy dosimetry are not directly applicable to BNCT. The existing dosimetry guidance for BNCT provides recommendations for the dosimetric methods but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be effected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test for the beam monitoring system with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) determined by the groups participating the intercomparison were generally in agreement within the stated uncertainties. However, the measurement uncertainties were large, ranging from 3-30% (1 standard deviation (SD)), depending on the method and depth of measurement, emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. The feasibility of microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was systematically lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The need for consistent procedures with gel dosimeters was emphasised to ensure reliable results. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy

Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...

متن کامل

MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

Radiation sensitive polymer gels are among the most promising three-dimensional dose verification tools developed to date. Polymer gel dosimeter known by the acronym MAGIC has been tested for evaluation of its use in boron neutron capture (BNCT) dosimetry. We irradiated a large (diameter 10 cm, length 20 cm) cylindrical gel phantom in the epithermal neutron beam of the Finnish BNCT facility at ...

متن کامل

Fir 1 Epithermal Neutron Beam Model and Dose Calculation for Treatment Planning in Neutron Capture Therapy

The epithermal neutron beam model of the Finnish boron neutron capture therapy (BNCT) facility (FiR 1) was created using the two-dimensional (2D) discrete ordinates transport (DORT) code. The final design of the beam was achieved using the DORT model: the optimal thickness of the neutron moderator and the length and the thickness of the bismuth collimator of the beam were calculated. The final ...

متن کامل

A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.

Advanced methods of boron neutron capture therapy (BNCT) use an epithermal neutron beam in conjunction with tumor-targeting boron compounds for irradiation of glioblastomas and metastatic melanomas. A common neutron-producing reaction considered for accelerator-based BNCT is 7Li(p,n)7Be, whose cross section increases very rapidly within several tens of keV of the reaction threshold at 1.88 MeV....

متن کامل

طراحی و بهینه‌سازی طیف نوترونی برای درمان تومورهای عمیق مغزی به روش BNCT با کاهش آسیب رسیده به پوست

Boron neutron capture therapy (BNCT) is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET) radiation (particles 4He and 7Li nuclei) to tumors at the cellular level whilst avoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009